# Plasma Falling Liquid Film Reactor to Study PFAS Decomposition

Zilun Xiang<sup>1</sup>, Aditya Bhan<sup>2</sup>, Peter Bruggeman<sup>1</sup>

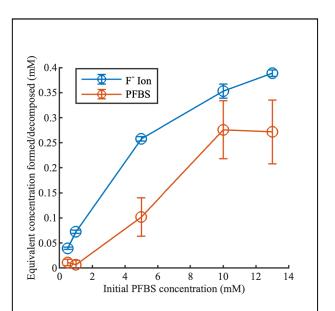
<sup>1</sup>Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA <sup>2</sup>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA

**Abstract:** This study investigates plasma-liquid interactions in a falling liquid film reactor for degrading Perfluorobutane sulfonic acid (PFBS). Measurements of PFBS decomposition show that degradation transitions from transport-limited to reaction-limited regimes as reactive species flux saturates at higher pollutant concentrations, emphasizing the reactor's efficiency in enhancing reactive species delivery and plasma-assisted degradation.

# 1. Introduction

Plasmas have emerged as a promising technology for wastewater treatment. Reactive species such as OH radicals, electrons, and photons generated by non-thermal plasma have been shown to degrade persistent organic pollutants, including Poly- and Perfluoroalkyl Substances (PFAS) [1-2]. However, liquid phase transport limitations of the reactants to the plasma-liquid interface often significantly limit conversion.

To study reactions and the transport of reactive species from plasma and reactants from liquid to the interface, we developed a falling liquid film plasma reactor. The plasma treatment of thin films with thicknesses in the range of 10 to 30  $\mu$ m enables controlled fluid flow while concurrently reducing transport timescales and providing an interesting testbed to study plasma-assisted degradation mechanisms [3].


#### 2. Methods

The plasma-liquid film reactor consists of a DC-driven plasma jet operating at 8 - 9 W at atmospheric pressure, with helium as the working gas at 1 standard liter per minute. The falling liquid film comprises a 2 mm  $\times$  35 mm wire loop with a wire thickness of 30  $\mu$ m, forming water liquid films with thicknesses ranging from 9  $\mu$ m to 30  $\mu$ m. Sodium formate and PFBS solutions ranging from 0.5 mM to 13 mM were prepared in a neutral pH buffer with a conductivity of 20 mS/cm for this study.

Quantitative Nuclear Magnetic Resonance (qNMR) was employed for the detection and quantification of PFBS and  $F^-$  ions in solution. A 2D transport-reaction model was used to simulate the transport and reactions of plasma-derived species in the liquid phase with plasma-produced reactive species fluxes as boundary conditions.

### 3. Results and Discussion

Figure 1 shows the PFBS consumption and fluoride ion forming under plasma treatment of the liquid film. PFBS decomposition occurs at the plasma-liquid interface, driven by OH radicals (penetration depth ~1 µm) and solvated electrons (penetration depth ~10 nm). At low concentrations, defluorination increases linearly with concentration, consistent with a diffusion-limited transport of PFBS to the liquid interface. At higher concentrations, the observed plateau in conversion, suggests a reactionlimited regime likely determined by plasmaproduced reactive species flux responsible for PFBS decomposition to the liquid.



**Fig. 1.** Equivalent PFBS concentration consumed and fluoride ion concentration formed from defluorination by plasma treatment of a flowing liquid film with a thickness of 15  $\mu$ m as a function of the initial PFBS concentration.

#### 4. Conclusion

The falling liquid film plasma reactor addresses transport limitations by varying the delivery of reactants in the liquid phase, highlighting transitions from transport-limited to reaction-limited regimes. These findings showcase the reactor's potential to study the processes underpinning plasma-enabled wastewater treatment.

## Acknowledgment

This work is supported by the U.S. National Science Foundation (NSF) under Award CBET-2318493.

#### References

[1] P. Bruggeman et al., J. Phys. D: Appl. Phys., **42**, 053001 (2009).

[2] K Yasuoka et al., Plasma Sources Sci. Technol., **20**, 034009 (2011).

[3] T. Srivastava et al., J. Chem. Phys., **160**, 094201 (2024).